
Finite-size scaling critical behavior of randomly pinned spin-density waves

Ronald Fisch*
382 Willowbrook Drive, North Brunswick, New Jersey 08902, USA

�Received 23 February 2009; revised manuscript received 7 May 2009; published 24 June 2009�

We have performed Monte Carlo studies of the three-dimensional XY model with random uniaxial aniso-
tropy, which is a model for randomly pinned spin-density waves. We study L�L�L simple cubic lattices
using L values in the range 16–64, and with random anisotropy strengths of D /2J=1, 2, 3, 6, and �. There is
a well-defined finite-temperature critical point, Tc, for each of these values of D /2J. We present results for the
angle-averaged magnetic structure factor S�k� at Tc for L=64. We also use finite-size scaling analysis to study
scaling functions for the critical behavior of the specific heat, the magnetization, and the longitudinal magnetic
susceptibility. Good data collapse of the scaling functions over a wide range of T is seen for D /2J=6 and �.
For our finite values of D /2J the scaled magnetization function increases with L below Tc and appears to
approach an L-independent limit for large L. This suggests that the system is ferromagnetic below Tc.
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I. INTRODUCTION

The Harris-Plischke-Zuckermann model1 has long been
used to study the effects of random uniaxial anisotropy on
ferromagnetism. The Hamiltonian of this random anisotropy
model �RAM� is

HRAM = − J�
�ij�

S� i · S� j − D�
i

�n̂i · S� i�2, �1�

where each S� i, the dynamical on site i, is usually taken to be
a classical three-component spin of unit length. Each n̂i is a
time-independent unit vector. The n̂ on different sites are
assumed to be uncorrelated random variables. ��ij� is a sum
over nearest neighbors on some lattice. In this work we will
use a simple cubic lattice with periodic boundary conditions
and we will study the case of two-component �n=2� spins.

As was discussed in some detail in an earlier paper,2 if
one chooses the S� i and the n̂i to be two-component vectors,
then the Hamiltonian can be mapped onto a model of a spin-
density wave �SDW� in an anisotropic material with an easy
axis. For XY spins, i.e., n=2, the Hamiltonian of the model
may be rewritten as

H = − J�
�ij�

cos��i − � j� −
D

2 �
i

�cos�2��i − �i�� − 1	 . �2�

Each �i is a dynamical variable which takes on values be-
tween 0 and 2�. The �ij� indicates here a sum over nearest
neighbors on a simple cubic lattice of size L�L�L. We
choose each �i to be an independent identically distributed
quenched random variable with the probability distribution

P��i� = 1/2� �3�

for �i between 0 and 2�. A constant term has also been
added to the anisotropy to make the Hamiltonian well be-
haved in the limit D /J→�.

In this work we will study Eq. �2� on the simple cubic
lattice over a range of D /J using Monte Carlo simulations.
The large increase in available computing resources over the
last 15 years makes possible significant improvements over
the earlier results.2 By studying a range of L, we will be able

to learn about the stability of long-range order against ran-
dom pinning which respects the Kramers degeneracy, such as
alloy disorder, and the critical behavior of a SDW in an
easy-axis material with this type of pinning.

II. RANDOM-PINNING EFFECTS

In the limit D /J→�, often called the Ising limit, both
analytical3–5 and numerical2,6–8 calculations become substan-
tially simplified. This is due to the fact that in this Ising limit,
the random anisotropy term in the Hamiltonian becomes a
projection operator and each spin has only two allowed
states. It has been argued that for large D /J, the behavior is
close to the D /J=� limit as long as T�D.5 It has also been
found, however, that for n=2, at low temperatures and mod-
erately large values of D /J, the magnetization per spin on
L�L�L simple cubic lattices, 
M� �L�
, decreases2 as the
temperature, T, is lowered. This effect was not seen for
D /J=�.

A similar effect is seen in the case of the random bond
Ising model �RBIM�, where the Nishimori gauge symmetry
causes the magnetization to have a maximum at a finite T on
the Nishimori line.9,10 The RBIM is the natural extension11,12

of the RAM to the case of Ising spins, n=1. Thus it should
be expected that the phase diagram of the n=2 RAM has a
close relation to that of the RBIM. However, there are as-
pects of the phase diagrams which remain somewhat myste-
rious. For example, Chen and Lubensky11 found that the
critical exponents which describe the stability of the
ferromagnet-spin glass-paramagnet multicritical point for the
random bond model in 6−� dimensions are well behaved for
n=1 but become complex for n=2 and n=3. One interpreta-
tion of this puzzling result is that the multicritical point itself
becomes unstable in 6−� dimensions, so that it becomes a
region of the phase diagram rather than a single point. In this
expanded multicritical region, one might expect to find
quasi-long-range order �QLRO�. Although an explicit calcu-
lation has not been done, a similar result would not be sur-
prising for the RAM. The existence of QLRO in the RAM
was first suggested by Aharony and Pytte13 in 1980. They
later14 pointed out that higher-order terms might make the
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correlation length, 	, finite below Tc. Feldman15 has argued
that QLRO should be common in disordered magnets and
similar systems.

Thus there are a number of possibilities available for the
topology of the phase diagram. In a Cayley-tree mean-field
theory, where QLRO does not occur, it is known5 that in the
limit D /J→� the phase diagram depends on the parameter
z /n, where z is the number of nearest-neighbor spins. Thus it
is to be expected that the phase diagram in three dimensions
will also depend on the lattice type n and the range of the
exchange interactions, as well as on T /J and D /J. For the
simple cubic lattice �which has z=6� it has been shown8 that
in the limit D /J→�, the ground state is an Ising spin glass
when n
3. For small D /J, however, where one does not
expect the qualitative behavior to depend on z, Feldman15

predicts QLRO in d=3 for n�4. In the n=3 case, this ap-
pears to be confirmed by Monte Carlo calculations.16

The presence of a reentrant phase is difficult to demon-
strate conclusively using the type of numerical calculations
we have performed here. It was only relatively recently that
reentrance was demonstrated convincingly in the d=2
RBIM.17,18 There may also be a range of D /J for which the
three-dimensional n=2 model has a reentrant ferromagnetic
phase. One motivation for believing this is that reentrance is
frequently observed in laboratory experiments. Another is
the work of Pelcovits, Pytte, and Rudnick19,20 who argue that
ferromagnetism should be unstable in the RAM for low T
and small D /J. Since magnetization can increase with in-
creasing T at low T, �which was not known at the time of
their work� it is not correct to claim that the absence of
ferromagnetism near T=0 precludes the existence of a ferro-
magnetic phase in the RAM at a somewhat higher T.

Larkin21 studied a model for a vortex lattice in a type-II
superconductor. His model replaces the spin-exchange term
of the Hamiltonian with a harmonic potential, so that each �i
is no longer restricted to lie in a compact interval. He argued
that for any nonzero value of a random field, this model has
no long-range order on a lattice whose dimension d is less
than or equal to four. This argument, using the harmonic
potential instead of the spin exchange, is only rigorously
correct in the limit n→�.

A more intuitive derivation of the result was given by
Imry and Ma,22 who assumed that the increase in the energy
of an Ld lattice, when the order parameter is twisted at a
boundary, scales as Ld−2, just as it does in the nonrandom
ferromagnet. As argued by Imry and Ma,22 and later justified
more carefully,23,24 within an � expansion, one finds the phe-
nomenon of “dimensional reduction.” Within this perturba-
tion theory the critical exponents of any d-dimensional O�n�
random-field model �RFM� �for which the Kramers degen-
eracy is broken by the randomness� appear to be identical to
those of an ordinary O�n� model of dimension d−2. For the
Ising �n=1� case, this dimensional reduction was shown rig-
orously to be incorrect.25,26 Another interesting development
was the calculation of Mezard and Young27 who showed that
random fields caused breaking of replica symmetry below Tc
for any finite value of n. Thus there is no good reason to
expect that dimensional reduction should be correct near Tc
for any finite value of n.

Although there is certainly a family resemblance between
the RFM and the RAM, the difference between breaking the

Kramers degeneracy at the level of Hamiltonian and break-
ing it spontaneously has profound consequences. One such
consequence is theorem 4.4 of Aizenman and Wehr,28 which
applies to the RFM but not to the RAM. A naive but not
entirely misleading analogy may be drawn between the rela-
tionship of the RFM to the RAM and the relationship be-
tween applying a uniform magnetic field to a ferromagnet or
to an antiferromagnet. The field which couples linearly to the
order parameter has a qualitatively stronger effect than the
field which couples quadratically to the order parameter.

Translation invariance of HRAM is broken for any nonzero
value of D, since the vectors n̂i are random. Within a high-
temperature perturbation theory, performing a configuration
average over the ensemble of random lattices appears to re-
store translation invariance above Tc. However, the radius of
convergence of this perturbation theory cannot be greater for
D�0 than it is for D=0. For models described by Eq. �1�,
the Tc predicted by extrapolating the low orders of perturba-
tion theory is always maximal at D=0. This implies that for
D�0, the high-temperature perturbation theory does not
converge near Tc. The inadequacy of perturbation theory to
describe XY models in d=3, because of the effects of vortex
lines, has been discussed by Halperin.29 While it is not clear
than Halperin’s argument is valid for the RFM, where the
Kramers degeneracy is broken by the Hamiltonian, it should
be valid for the RAM. Thus it seems quite implausible that
for d�4, the twist energy for Eq. �2� really scales as Ld−2

when D�0, even though this is correct to all orders in the
configuration-averaged perturbation theory.

The argument of Pelcovits20 for the n=2 RAM, which is a
prototype for much subsequent work,30 assumes that if one
goes to small enough D /J and low enough T, then the effects
of vortex lines can be ignored. In essence, what is done is to
replace the spin variables by a noncompact “elastic mani-
fold.” These authors then claim that this does not affect the
behavior one is studying. However, this cannot be true when
one considers behavior on scales larger than the Imry-Ma
length.31

The basic point is that Imry-Ma-type arguments for con-
tinuous O�n� spins �i.e., n
2� are not self-consistent. One
begins by assuming that the random field is weak so that the
twist energy scales as Ld−2, as in the absence of the random-
ness. Then one shows that, if d�4 and T�Tc, the effective
coupling to the random field increases as L increases. If the
effective random coupling is strong, however, then assuming
that the twist energy is uniformly distributed throughout the
volume is not reasonable. The conclusion which should be
drawn from this is that a deeper analysis is needed when d
�4.

In order to understand whether the problems with pertur-
bation theory are actually due to vortex lines, and thus re-
stricted to the n=2 case, or if similar problems can also be
expected for n2, it may be helpful to reconsider the analy-
sis of Pelcovits, Pytte, and Rudnick.19 These authors show
that within their perturbation theory, the pure O�n� mean-
field theory critical fixed point remains stable against random
anisotropy for d4. This contrasts to the random-field case,
where mean-field theory is only stable for d6. Then they
argue that for d�4 and n
2, there is no stable critical fixed
point for the RAM because under rescaling transformations,
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the random anisotropy coupling constant runs off to �. How-
ever, they did not �and within their formulation could not�
examine the possibility that there could exist another ferro-
magnetic critical fixed point at a large value of D /J. The
reason why such an object may exist is that there exist alter-
native formulations of mean-field theory3,5 for the RAM in
the limit D /J→�.

It is useful to consider the generalization of Eq. �2� to
p-fold random fields.32 In the d=2 case33,34 it has been
shown that there continues to be a Kosterlitz-Thouless phase
as long as p28, i.e., for p28 a weak p-fold random field
does not destroy the Kosterlitz-Thouless phase. It was
claimed by Aharony32 that ferromagnetism should be un-
stable for any value of p when d=3. However, a computer
simulation study35 for p=3 is not consistent with this claim,
which is based on the weak randomness perturbation theory
around the D=0 model. This d=3 computer simulation finds
that there is a mass gap at T=0, an effect which cannot be

reproduced within the perturbation theory. The interpretation
of this is that for p
3, the thickness of a domain wall re-
mains finite in the limit L→�, i.e., the domain wall becomes
localized by random pinning.

Removing vortex lines from the pure XY model by letting
the vortex fugacity become large forces the system into a
ferromagnetic state at any temperature.36,37 This result is true
even in the presence of a strong p=2 random anisotropy,38

but the p=2 case is more complicated than p
3. For p=2,
as we shall see, the domain walls probably have a fractal
structure rather than becoming completely localized.

III. NUMERICAL RESULTS

In this work, we will present results obtained from heat-
bath Monte Carlo calculations. The data were obtained from
L�L�L simple cubic lattices with 16�L�64 using peri-
odic boundary conditions. The calculations were done for a
12-state clock model, i.e., a Z12 approximation39 to the XY
model of Eq. �2�. The computer program was an adaptation
of the code used recently for the XY model in a random
field,40 modified to replace the random-field term with the
random twofold anisotropy term of Eq. �2�. For any integer
value of the quantity D /2J, one can use a lookup table for
the Boltzmann factors because all the energies in the prob-
lem are then expressible as sums of integers and integer mul-
tiples of �3. The values of D /2J for which data were ob-
tained are 1, 2, 3, 6, and �.

The discretization of the phase space of the model has
significant effects at very low T but the effects at the tem-
peratures we study here are expected to be negligible com-
pared to our statistical errors. The probability distributions
for the local magnetization of equilibrium states which are
calculated for the Z12 model are found to have very small
contributions from the third and higher harmonics of cos���
and sin���. This is strong evidence that the 12-state clock
model is an accurate approximation to the XY model within
our range of parameters. The Z12 model shows equivalent
behavior for D and −D, unlike the Z6 model used earlier.2

The program uses two independent linear congruential
pseudorandom number generators, one for choosing the val-
ues of the �i and a different one for the Monte Carlo spin
flips, which are performed by a single-spin-flip heat-bath al-
gorithm. The code was checked by setting D=0 and seeing
that the known behavior of the pure ferromagnetic system
was reproduced correctly.

Each sample was started off in a random spin state, at a
temperature significantly above the Tc for the pure model,
and cooled slowly. Thermal averages for S�k� � were obtained
at a set of temperatures spanning the critical region.

The magnetic structure factor, S�k� �= �
M� �k� �
2�, for n=2
spins is

S�k� � = L−3�
i,j

cos�k� · r�ij��cos��i − � j�� , �4�

where r�ij is the vector on the lattice which starts at site i and
ends at site j. Here the angle brackets denote a thermal av-
erage. For a RAM with n1, unlike the RBIM, the longitu-
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FIG. 1. Angle-averaged structure factor for 64�64�64 lattices
with D /2J=1 at T=2.203 125. The axes are scaled logarithmically.
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FIG. 2. Angle-averaged structure factor for 64�64�64 lattices
with D /2J=2 at T=2.1875. The axes are scaled logarithmically.
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dinal part of the magnetic susceptibility, �l, which is given
by

T�l�k� � = 1 − M2 + L−3�
i�j

cos�k� · r�ij���cos��i − � j�� − Qij� ,

�5�

where M2= �
M� 
�2, and Qij = �S� i� · �S� j�. For O�2� spins

M2 = L−6���
i

cos��i���2
+ ��

i

sin��i���2� �6�

and

Qij = �cos��i���cos�� j�� + �sin��i���sin�� j�� . �7�

Thus M2 is not the same as S, even above Tc. The scalar
quantity M2 is a well-behaved function of the lattice size L
for finite lattices, which approaches its large L limit

smoothly as L increases except, possibly, at a phase transi-
tion. The vector M� , on the other hand, may not be a well-
behaved function of L for an XY model in a twofold random
field. Knowing the local direction in which M� is pointing,
averaged over some small part of the lattice, may not give us
a strong constraint on what M� will be for the entire lattice.

The critical exponent � is defined at T=Tc by the small 
k� 

behavior

S�k� � � c
k� 
−�2−��, �8�

where c is some constant. For each value of D /J, results for
four different L=64 configurations of the random anisotropy
�i were averaged. The same four samples of random �i were
used for all values of T, and all values of D /J, in order to
facilitate the comparison of results for different values of T
and D.

All of the data shown in these figures were obtained from
Monte Carlo runs which used hot start initial conditions,
starting at temperature well above Tc. The value of T was
then lowered in steps. The initial part of the run at each T
was discarded to allow the system to equilibrate. For these
L=64 runs with D /2J=1, at each T a sequence of spin states
obtained at intervals of 20 480 Monte Carlo steps per spin
�MCS� was Fourier transformed and averaged. For the larger
values of D, where the relaxation times are longer, this in-
terval was chosen to be 102 400 MCS. The number of these
selected spin states was chosen to be 16 for each of the finite
values of D /J and 32 for D /J=�. The Fourier-transformed
spin-state data were then binned, according to the values of
k= 
k� 
, to give the angle-averaged S�k�. Finally, a configura-
tion average over the four random samples was performed.
Both equally weighted and logarithmically weighted aver-
ages were tried. No significant differences were found be-
tween these two types of weighting and only the equally
weighted averages will be displayed here.

The results for D /2J=1, 2, 3, 6, and � are shown in Figs.
1–5, respectively. The values of T which are used in these
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FIG. 3. Angle-averaged structure factor for 64�64�64 lattices
with D /2J=3 at T=2.171875. The axes are scaled logarithmically.
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FIG. 4. Angle-averaged structure factor for 64�64�64 lattices
with D /2J=6 at T=2.078125. The axes are scaled logarithmically.
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FIG. 5. Angle-averaged structure factor for 64�64�64 lattices
with D=� at T=1.921875. The axes are scaled logarithmically.
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figures are convenient binary fraction approximations to the
values of Tc at these values of D /2J. The best estimates of Tc
were determined later by the analysis of the data over a range
of L and T. We see from these figures that S�k� is only a
weakly varying function of D /J, at least for L=64.

The values of 2−�, as displayed in the figures, were
found by least-squares fits to the data points for 0�k
�� /8, where the data are well approximated by Eq. �8�.
Note that � appears to be a slowly varying monotonic func-
tion of D /J and that the extrapolation of � down toward D
=0 appears to be significantly different from the value of �
found for the nonrandom n=2 ferromagnet.41,42 It is also
interesting to note that the value of � found for D=� appears
to be identical to the value of � for the nonrandom system
but the significance of this is unclear.

The fact that � appears to vary with D /J is an indication
that the claim of Reed43 is too simplistic. He did not calcu-

late a numerical value for �, but he argued that the finite-size
scaling �FSS� behavior at D /2J=1 was indistinguishable
from that of the nonrandom system.

One should not conclude from these data that � is varying
continuously with D so that there is a line of critical points.
Another explanation of the data is that for any D, we have a
function Deff�D /J ,L� which increases very slowly as L in-
creases, up to a value Deff=D�. Then we will only find �eff
=�� when L becomes large enough so that Deff�D�. In the
Cayley tree mean-field approximation,5 whether D� is finite
or infinite depends on the value of z /n.

If we make the assumption that the usual critical exponent
scaling laws for translation-invariant models remain valid for
the RAM, we can easily obtain values of the exponent com-
binations � /� and � /� from our computed values of 2−�.
These combinations are exactly what we need for FSS of the
magnetization 
M� �L ,T�
 and the magnetic susceptibility44
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FIG. 6. �Color online� Finite-size scaling near Tc for L�L�L lattices with D /2J=1. �a� Configuration-averaged magnetization vs
temperature. �b� �l vs temperature. The y axis is scaled logarithmically.
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FIG. 7. �Color online� Finite-size scaling near Tc for L�L�L lattices with D /2J=2. �a� Configuration-averaged magnetization vs
temperature. �b� �l vs temperature. The y axis is scaled logarithmically.
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�l�L ,T�. Thus, by making standard FSS plots,45 we can test
the validity of these scaling laws for the RAM.

In Fig. 6�a� we show a FSS plot of the configuration av-
erage of 
M� �L ,T�
 on L�L�L lattices for L between 16 and
64. The number of sample configurations used for each L
�64 was 8 for D /2J=1, 2, 3, and 6, and 16 for D=�. For
L=64, the number of samples was 4 for all D. Figure 6�b�
shows a similar plot for �l. Figures 7–10 show the corre-
sponding plots for D /2J=2, 3, 6, and �, respectively. Since
the values of � used here were taken from the fits to the
small k behavior of S�k�, the only two adjustable fitting pa-
rameters used in these figures were the values of � and Tc,
which were required to be identical for parts �a� and �b� of
each figure.

In these FSS plots, the temperature coordinate scales as
�T−Tc�L1/�. The reader should note that the range of T which
we cover in these plots is about an order of magnitude larger

than the range which one would typically use for a problem
where one is already confident about the nature of the phase
transition, and one is trying to obtain high-precision esti-
mates of Tc and the critical exponents by concentrating on
the range of T where 	�L. As a consequence of this, the
spacings between the values of T for which we have taken
data are rather large. Thus we are unable to use histogram
reweighting46 to obtain essentially continuous values for the
thermodynamic functions.

From the results given in these figures, we see that the
estimates of � increase monotonically and the estimates of Tc
decrease monotonically as D /2J increases. We also see that
the peak in �l is slightly above Tc for finite L, which is
typical for ferromagnetic critical behavior. The data collapse
is good near this peak, which is the range of T for which 	
L. We do not give estimates of statistical errors for � be-
cause we believe that the variation in � in the range D /2J
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FIG. 8. �Color online� Finite-size scaling near Tc for L�L�L lattices with D /2J=3. �a� Configuration-averaged magnetization vs
temperature. �b� �l vs temperature. The y axis is scaled logarithmically.
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FIG. 9. �Color online� Finite-size scaling near Tc for L�L�L lattices with D /2J=6. �a� Configuration-averaged magnetization vs
temperature. �b� �l vs temperature. The y axis is scaled logarithmically.
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=1–6 is due to variation in the value of Deff. We will discuss
this further in the next section. The errors in the values of Tc
are estimated to be less than �0.01.

Figure 11 shows the difference between an estimate of the
specific heat at Tc for an infinite system, cH�Tc�, and the
calculated specific heat of a finite system at temperature T,
cH�L ,T� for D /2J=1. The only new adjustable fitting param-
eter here is cH�Tc�. Figures 12–15 show the corresponding
plots for D /2J=2, 3, 6, and �, respectively. The values of
cH�Tc� decrease monotonically as D /2J increases. In all
cases, the values of cH�Tc� given in the figures are estimated
to be accurate to about 1%. As we also saw for 
M� 
 and �l,
the FSS data collapse is not good below Tc for D /2J�3. The
results for D=� are in very good agreement with the earlier
results2 obtained with the Z6 approximation.

IV. DISCUSSION

According to Imry and Ma22 and Pelcovits, Pytte, and
Rudnick,19 for small D /J, this model should appear ferro-
magnetic when L is smaller than the “Imry-Ma length,”
which is determined by balancing the domain-wall energy
against the energy of random pinning. If this length exists,
when L is larger than the Imry-Ma length, the system will
break up into domains without long-range order. We have
argued here, however, that in the presence of random pinning
one should not believe that the domain-wall energy scales as
Ld−2. One can try to patch up this picture by assuming that
the domain-wall energy scales as Ld−�dw, with 3 /2��dw
�2. If this were the case, then it would still be possible for
d=3 to find a length scale where the domain-wall energy
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FIG. 10. �Color online� Finite-size scaling near Tc for L�L�L lattices with D /J=�. �a� Configuration-averaged magnetization vs
temperature. �b� �l vs temperature. The y axis is scaled logarithmically.
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balanced the random-pinning energy. Then it would continue
to be true in d=3 that the system would break up into Imry-
Ma-like domains when L became very large.

What we see in our FSS plots for D /2J�3, however, is
that when T�Tc, the leading correction to finite-size scaling
increases the magnetization as L increases. Therefore this
model appears to be stable against domain formation for
D /2J�3, at least for some range of T below Tc. The natural
interpretation of this result is that �dw must be less than 3/2
in d=3 for the n=2 case.

Figure 12, the FSS magnetization plot for D /2J=3, shows
that as L increases the data for T�Tc seem to be converging
to a scaling function which is independent of L. For the data
in Fig. 15 for D /2J=6, the data appear to be in this
L-independent limit. If we were able to do the Monte Carlo

calculations at substantially larger values of L, we would
expect to see the same type of convergence for D /2J=1 and
2.

If we had data at such large values of L, so that the
magnetization scaling function had converged to an
L-independent limit, then our estimates of the critical expo-
nents would be expected to shift somewhat. Therefore, it is
likely that ��, the true value of � in the range of D /2J from
1 to 6, is actually independent of D /J.

The reader must also remember that the ferromagnetic
phase is allowed to be reentrant. Therefore, we do not claim
that the ferromagnetic behavior which we see below Tc must
be stable down to T=0 over the entire range of D /J. Also,
we do not claim stable ferromagnetism for very large values
of D /J. It must be stated, however, that this only applies to
the simple cubic lattice with nearest-neighbor interactions.
We expect that it would be possible to stabilize a ferromag-
netic phase at D=� by adding further neighbor finite-range
exchange interactions.

We point out that our earlier claim2 of infinite magnetic
susceptibility without ferromagnetism when D=� was based
on results at T=0.47 Since the magnetization of finite simple
cubic lattices with D=� seems to be a monotonically de-
creasing function of T,2 however, we consider the existence
of true ferromagnetism on this lattice to be unlikely at any T
for D=�.

The author sees no reason to believe that the exponent
�dw should be independent of n for d=3. Thus, while we
claim the existence of a ferromagnetic phase for n=2, we are
not making any claim here about the behavior for n=3. We
do expect that �dw must converge to 2 in the limit n→�, in
agreement with the result of Larkin.21 The reason for this is
that for n→� the “elastic-manifold” approximation becomes
valid.

Clearly, it would be desirable to obtain a direct estimate of
�dw by, for example, calculating the change in energy of a
sample between periodic and antiperiodic boundary condi-
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tions along one direction. Since the energies involved are
subextensive and the domain-wall energy goes to zero at Tc,
it is difficult to do such a calculation.

V. SUMMARY

In this work we have presented Monte Carlo results for
the d=3 XY random anisotropy model �Eq. �2�� for several
values of the anisotropy strength D /J. By studying the finite-
size scaling behavior of L�L�L simple cubic lattices over
the range 16�L�64, we find that, for values of D /J which

are not very large, there appears to be a finite-temperature
critical point at which the model undergoes a transition into a
ferromagnetic phase. For this lattice, at very large D /J, the
transition appears to be into a phase with QLRO but no true
magnetization.
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